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Abstract: The semantic segmentation of point clouds is a crucial undertaking in 3D reconstruction and
holds great importance. However, achieving precise semantic segmentation represents a significant
hurdle. In this paper, we present BEMF-Net, an efficient method for large-scale environments. It starts
with an effective feature extraction method. Unlike images, 3D data comprise not only geometric
relations but also texture information. To accurately depict the scene, it is crucial to take into account
the impacts of texture and geometry on the task, and incorporate modifications to improve feature
description. Additionally, we present a multi-scale feature fusion technique that effectively promotes
the interaction between features at different resolutions. The approach mitigates the problem of
the smoothing of detailed information caused by downsampling mechanisms, while ensuring the
integrity of features across different layers, allowing a more comprehensive representation of the
point cloud. We confirmed the effectiveness of this method by testing it on benchmark datasets such
as S3DIS, SensatUrban, and Toronto3D.

Keywords: urban scene; point cloud; semantic segmentation; deep learning; feature enhancement;
multi-scale fusion

1. Introduction

With the advancement of science and technology in recent years, 3D data have played
an increasingly important role in intelligent analysis and simulation. Point clouds, an
important segment of visual data, are obtained by 3D sensors from either individual objects
or entire scenes. Point clouds also represent the digital mapping of the real world, providing
a comprehensive understanding of the state of a large and complex environment. This
has led to a significant shift in focus to 3D point clouds in areas such as smart cities [1–5],
autonomous driving [6–8], and land monitoring [9–11]. The challenge, however, is that
point clouds exist in the form of discrete point collections, making their effective processing
a complex task.

Semantic segmentation is crucial for both upstream and downstream tasks related
to point clouds [12–14]. Directly acquired point cloud data lack auxiliary information, so
categorizing each point and providing semantic information is necessary for the effective
performance of the subsequent relative tasks. Currently, image semantic segmentation [15],
change detection [16–18], and classification [19] have achieved significant success due to
the improvement of deep learning. These achievements have spurred research towards
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the effective application of deep learning to point cloud tasks [20], which has become an
important research direction.

As point cloud deep learning research progresses, related tasks have yielded certain
outcomes, leading to numerous novel methods [21–24]. In 2017, PointNet [25] involved a
direct approach to handling point clouds. After that, Pointnet++ [26] utilized a methodology
capable of perceiving local information. RandLA-Net [27] used the U-Net structure and
random sampling strategy to address large-scale scene applications by examining the point
cloud information at different scales. Since then, a large number of methods have been
proposed [28–30], mainly aimed at acquiring more comprehensive features and enhancing
local information by constructing geometric neighborhood relationship maps to improve
experimental results. Although these approaches have proven to be crucial in boosting
the feature description capability for point cloud semantic segmentation, they still face a
number of challenges.

Firstly, accurately describing point cloud information is the core problem of scene
understanding. One way to achieve this is to create a geometric neighborhood relationship
graph. However, this approach [31] also has its limitations. Geometric relationships created
simply by finding the K-nearest neighbors in Euclidean space may not accurately capture
local relationships. Local regions in a scene frequently display similar geometric patterns,
making it difficult to effectively distinguish between them using a geometric relationship.
Therefore, we propose the dilated bilateral block (DBB), which generates multiple feature
spaces by incorporating additional information and exploits the differences between these
spaces to improve feature representativeness. Image semantic segmentation is commonly
achieved through color, while point clouds also carry texture information. This study
enhances local information by establishing texture relationships, and precise segmentation
is achievable in areas with a dense distribution of various semantic categories through the
difference between the initial and offset spatial attributes.

Secondly, the effective utilization of information across varying scales is critical to
solving the problem of accurately segmenting large-scale scenes. The encoder–decoder
architecture adopts an inverted pyramid structure, allowing the integration of features
at different scales. The downsampling process enables the acquisition of several point
cloud segments with varying densities. Additionally, it is evident that the point cloud
becomes less dense as it is sampled at lower layers. The use of these point clouds enables
the perception of neighborhood states through varying receptive fields. Subsequently, the
upsampling structure combines this information to provide a comprehensive description at
multiple scales. Several methods [32–35] have been proposed to enhance this framework
for more efficient usage. However, the existing methods tend to fuse information layer
by layer. The sequence fusion method leads to the omission of a considerable number
of intricate details in sparser point clouds and hinders cross-scale information exchange,
thereby diminishing the veracity of features. To address the aforementioned issues, we
introduced the U-Fusion module, which incorporates a symmetrical structure of progressive
aggregation and divergence. The purpose of progressive aggregation is to reduce the
feature gap as the fusion proceeds and to prevent feature information from becoming
blurred during multiscale fusion. Furthermore, in order to guarantee the exchange of
information between different scales and maintain the integrity of the data, we adopted a
gradual divergence approach to achieve this goal.

In summary, our main contributions are as follows:

• We propose the dilated bilateral block (DBB) module, which allows the fine-grained
learning of point clouds and optimizes the understanding of their local relationships.
The module enriches the neighborhood representation by constructing local texture
relations. In addition, it uses the differences in the neighborhood space to effectively
differentiate semantic class boundaries.

• We designed a novel U-Fusion module, which facilitates the exchange of information
from point clouds at multiple resolutions and ensures the effective utilization of
features at each resolution.
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• We proposed BEMF-Net for the task of semantic segmentation of large-scale point
cloud scenes and achieved excellent results on all public benchmark datasets.

2. Related Work
2.1. Semantic Segmentation on Point Cloud

As deep learning research on point clouds progresses, there are numerous new
methods [36–40] that have achieved excellent performances on semantic segmentation.
Currently, there are three primary methods for semantically segmenting point clouds:
projection-based, voxel-based, and point-based. Projection-based approaches [41] rely on
a virtual camera to project the point cloud as a set of images into multiple viewpoints,
then perform semantic segmentation through 2D image deep learning, and finally re-
project the image segmentation results onto the point cloud. Voxel-based techniques [39]
require the point cloud to be converted into voxels, and the points within each voxel
block share the same semantic segmentation result. Both methods dilute the intricacies
of geometric structural information within the point cloud data structure, leading to a
reduction in its descriptive capacity. Point-based methods [42–44] do not require data type
conversion for the point cloud and directly use points as input. PointNet [25] achieves
this by using multilayer perceptrons (MLPs) to learn features, and a max-pooling layer
for global feature extraction. PointNet++ [26] addresses the issue of insufficient local
information by introducing the concept of neighborhood balls. Most of the methods are
implemented through MLPs or graph convolution, while KPConv [33] involves a different
approach by proposing kernel point convolution, a type of convolution suitable for 3D data.
PCT [45] introduces a transformer module to achieve the interaction between global and
local information.

2.2. Point Cloud Feature Extraction

The increasing research focus on point clouds has shifted the focus of feature extraction
from individual points to local regions. In contrast to point-based methods, the present
current advanced approaches [43,46,47] accentuate the extraction of valuable insights from
local connections, typically established by spatial proximity. DGCNN [48] attains the
successful depiction of local information by utilizing the Euclidean distance to seek out the
K-nearest points and establish edge relationships upon these points. SCF-Net [44] intro-
duces the polar coordinate space to represent point clouds, aiming to overcome the problem
of orientation sensitivity of certain objects. However, current methods lack sufficient local-
ized information extraction. RandLa-Net [27] incorporates multi-resolution characteristics,
which provide unique descriptions of local information at different resolutions, expanding
the perceptual field through fusion. BAAFNet [32] uses both geometric relationships and
semantic associations, leveraging bilateral information to mutually enhance and offer a
boost to local contextual information. These methods independently process extensive
information using their respective approaches, enabling the information to be effectively
exploited. In this work, inspired by the feature learning of image vision, we introduce
texture information into the encoding process to enrich the local description. Further-
more, we effectively distinguish semantic category edges using differences in different
neighborhood spaces.

2.3. Multi-Scale Feature Fusion

The U-Net framework is frequently implemented in image processing tasks. The
inverted pyramid architecture enables the acquisition of features at diverse resolutions,
which capture diverse neighborhoods depending on the resolution. Hence, several studies
have been undertaken to effectively fuse information at multiple scales. Res-UNet [49]
applies residual concatenation instead of the sub-modules of the original structure. Dense-
UNet [50] interconnects each layer with the following layers. UNet++ [51] also adopted a
similar approach to improve skip-connection processing.
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In 2D images, there are several methods working on fusing the multi-scale information
of point cloud. PointNet++ [26] achieves this through interpolative fusion. BAAFNet [32]
involves a feature fusion module that uses an adaptive strategy to fuse features at different
scales. ResDLPS-Net [35] presents a method for pairwise aggregation to effectively extract
appropriate the neighborhood information. Meanwhile, MFA [34] utilizes dense skin
connections to improve feature retention at the current resolution. Although these methods
have produced satisfactory outcomes in real-world applications, they have overlooked
the presence of potential hidden risks. Fine-grained segmentation is highly dependent on
fully comprehending local information. The conventional U-Net approach only facilitates
the information interaction between neighboring layers, with no regard for the impact of
information at other resolutions. In contrast, our U-Fusion module not only explores the
efficient utilization of multi-scale information but also facilitates the interaction of features
at various resolutions to eliminate any possible perceptual blind spots.

3. Methodology

In 2D image semantic segmentation, the color information of each pixel is often
utilized for feature representation and semantic discrimination. Similarly, in 3D point cloud
semantic segmentation, we think color information, a semantic representation form for
each point, can enhance the accuracy and robustness of semantic segmentation with proper
handling and utilization. For the scene point cloud, we take the spatial coordinates and
color information of each point as the raw input P ∈ RN×6. Firstly, we use a fully connected
(FC) layer to perform feature extraction on P to obtain an initial semantic feature F ∈ RN×d.
Then, P and F are jointly input into five consecutive encoders for feature encoding, which
yields the encoding features {Ei}5

i=1. Subsequently, a U-Fusion module is employed to
facilitate feature interactions across multi-scales and layer-wise feature decoding. Finally,
three FC layers are used to predict final semantic labels C ∈ RN×NC from final decoding
features, where NC is the number of object categories.

3.1. Encoder Module

The encoder module consists of five successive dilated bilateral blocks (DBBs), each of
which includes two bilateral local aggregation (BLA) modules, as illustrated in Figure 1.
For each encoder layer, P serves as the guidance information to enhance and fuse with F.
Afterward, random sampling (RS) is performed to reduce the resolution of the point cloud,
and then we use an MLP to transform the feature into the specified dimension (the detail
settings are shown in the caption of Figure 1), and finally obtain the input for the next layer
of the encoder. Following the encoding process through several encoders, the final encoded
features will comprise a discriminative, spatially aware feature representation. At this
stage, each feature will cover a broader receptive field, making it more global compared to
the initial one.
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Figure 1. The overall architecture of our network, is coined BEMF-Net, for large-scale point cloud
segmentation. M denotes MLP, and d1, d2, d3, d4, d5 represent the dimensions of E1, E2, E3, E4, E5,
which are (N, 8), ( N

4 , 32), ( N
16 , 128), ( N

64 , 256), ( N
256 , 512).

3.1.1. Bilateral Local Aggregation

Given the point cloud P and semantic features F, as shown in Figure 2, we first
perform the K-nearest neighbor (KNN) clustering for each point pi of the point cloud and its
corresponding semantic feature fi. This allows us to obtain the information of neighboring
points pK

i =
{

p1
i , p2

i , . . . , pk
i

}
and their corresponding features f K

i =
{

f 1
i , f 2

i , . . . , f k
i

}
within

a certain range of point pi. Similarly, following the encoding approach of RandLA-Net [27],
we employ relative position encoding to pi and its corresponding semantic feature fi based
on the neighborhood relationships to capture the local geometric relationships around each
point, as follows:

β
(

pT
i , pK

i

)
= Concat

(
pT

i , pK
i , pT

i − pK
i ,
∥∥∥pT

i − pK
i

∥∥∥) (1)

β
(

f T
i , f K

i

)
= Concat

(
f T
i , f K

i , f T
i − f K

i ,
∥∥∥ f T

i − f K
i

∥∥∥) (2)

where pT
i = Tile(pi), f T

i = Tile( fi) are implemented for aligning pi, fi with the dimension of
the neighborhood features. In this case, Tile means expanding the point quantity dimension
to K. Concat is the concatenation operation. ‖·‖ is a scalar computation operator, which is
similar to the Euclidean distance. In particular, we first calculate the sum of the squares
of the differences of all components in the feature space, and then its square root is later
computed as a measure of distance in the feature space.
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Figure 2. The proposed dilated bilateral block (DBB) with bilateral local aggregation (BLA).

However, the features obtained after relative position encoding may exhibit some
ambiguity. This arises because KNN is a simple clustering algorithm, and in cases where
there are multiple classes in the boundary region, it usually results in feature inconsistency
for points, making it challenging to distinguish between different semantic categories. To
address this issue, we update each point’s coordinate-color encoding feature and semantic
encoding feature interactively to obtain two offsets f o

i and po
i by using a linear layer (e.g.,

an MLP layer), and their corresponding neighborhood features. These offsets are then
concatenated with the previous encoding features to generate p̄i, f̄i. This prevents features
from being confined to a single feature space, mitigating errors and making the feature
representation more distinctive and representative, as follows:
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po
i = MLP

(
β
(

f T
i , f K

i

))
+ pK

i (3)

f o
i = MLP

(
β
(

pT
i , pK

i

))
+ f K

i (4)

p̄i = Concat
(

β
(

pT
i , pK

i

)
, po

i

)
(5)

f̄i = Concat
(

β
(

f T
i , f K

i

)
, f o

i

)
(6)

As mentioned before, pixel-level segmentation in 2D primarily relies on color in-
formation. Therefore, we assume that the primordial coordinates and color information
can provide supervisory guidance for point cloud semantic segmentation. To prevent
information redundancy caused by the continuous encoding of features, we once again
concatenate the relative position encoding features with the bilateral features fbi. This
results in a multifaceted feature representation f̂i that takes into account geometry, color,
semantics, and the primordial information of the point cloud:

fbi = Concat
(
MLP( p̄i), MLP

(
f̄i
))

(7)

f̂i = Concat
(

fbi, β
(

pT
i , pK

i

))
(8)

Due to the abundance of information contained in multifaceted features f̂i, we employ
a straightforward attention mechanism to enable the network to automatically select highly
representative information while discarding irrelevant features. This results in a more
comprehensive and highly representative bilateral local aggregation enhanced feature f 1

i :

Watt
i = δ

(
MLP

(
f̂i

))
(9)

f 1
i = Sum

(
Watt

i ◦ f̂i

)
(10)

where δ(·) is the softmax activation function and ◦ is the element-wise product. Sum
aggregates the features of K points by summation, thereby reducing the quantity dimension
to a single point.

3.1.2. Dilated Bilateral Block

As previously noted, our dilated bilateral block (DBB) consists of two BLA modules,
and is designed to further expand the neighborhood of features to capture a wider range of
semantic information. However, there is a potential risk of losing the original information
when expanding the perception region. To avoid this, inspired by ResDLPS-Net [35], we
concatenate the outputs of the two blocks and update them through an MLP layer. Next,
the input feature fi is also updated through an MLP layer and then summed with the prior
fused output features, finally yielding the encoded feature f̃i:

f̃i = MLP
(

Concat
(

f 1
i , f 2

i

))
+ MLP( fi) (11)

In summary, the DBB module has the capability to learn a more comprehensive feature
space in the context of semantic segmentation tasks. This representation not only adjusts
and integrates coordinates, colors, and semantic information, but also encapsulates certain
geometric structural details. As a result, it yields a comprehensive and distinctive encoded
feature that effectively improves the accuracy and stability of semantic segmentation.
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3.2. U-Fusion Module

The traditional U-Net [52] architecture typically consists of three components: en-
coders, decoders, and skip connections that link the features of each encoder and decoder
layer. However, this simple form of skip connection is often inadequate for large-scale
semantic segmentation. Considering outdoor urban scenes as an example, they typically
contain semantic categories at multi-scales, such as large-scale objects like buildings and
roads, and small-scale objects like cars and bicycles. In scene-level semantic segmentation,
solely relying on the traditional U-Net architecture lacks the capability for feature inter-
actions between different scales. Consequently, during the encoding process, it always
results in an enlarged receptive field while losing a considerable amount of local and
fine-grained details.

To address the aforementioned problems, we propose the U-Fusion module. This
module innovatively combines encoding features from different layers, with a central focus
on identifying the anchor layer (or intermediate layer). It integrates feature information
from the local layer, global layer (adjacent upper and lower layer relative to the anchor
layer), and the current anchor layer. This integration enables the anchor layer to access
feature information from multi-scale receptive fields. Additionally, note that the dimensions
for features at the same layer are the same.

We hope that the fused information will possess both global and local characteristics,
resulting in comprehensive and extensive fused features. In this study, we selected the
second and fourth layers, which are relatively intermediate, as anchor layers to obtain the
fused features F1 and F2, as illustrated in Figure 3. After the initial fusion, to further enhance
and deepen the fused features, we once again fuse F1, F2 with the features from the third
layer of the encoder. This final fusion yields the fused encoder features F3, encompassing
information from all scales, as follows:

F1 = Conv(Concat(RS(E1), IS(E3), E2)) (12)

F2 = Conv(Concat(RS(E3), IS(E5), E4)) (13)

F3 = Conv(Concat(RS(F1), IS(F2), E3)) (14)

where RS is random sampling, which is used to downsample the point cloud to a given
size, thereby sparsifying the point cloud. IS represents interpolation sampling, which is
used to upsample the point cloud to a specified quantity, primarily to restore the resolution
of the point cloud. Conv denotes a convolution operation.

Similarly, in the decoding stage, we split the previously generated fusion encoder
features in an order that is symmetrical to the previous fusion process and concatenate them
with the corresponding decoder layers. This ensures that each decoder layer can access
scale-specific feature information, preventing performance degradation due to information
loss during the encoding process.

F4 = Conv(Concat(IS(F3), F1)) (15)

F5 = Conv(Concat(RS(F3), F2)) (16)

For each decoder layer, we first apply IS or RS to align the resolution of points in the
concatenated features and then use a transformation layer to reduce the feature dimension
as follows:

D1 = Conv(Concat(RS(F5), E5)) (17)

D2 = TransConv(Concat(IS(D1), F5)) (18)
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D3 = TransConv(Concat(RS(F4), IS(F5), IS(D2), F3)) (19)

D4 = TransConv(Concat(IS(D3), F4)) (20)

D5 = TransConv(Concat(IS(D4), IS(F4), E1)) (21)

where TransConv is the transpose convolution operation.

U-Fusion Module

Encoder Module

1E

2E

3E

4E

5E 1D

2D

3D

4D

5D

1F

2F

4F

5F

Random Sampling(RS) Up Sampling Skip connection

3F

Figure 3. The illustration of our U-Fusion module.

In summary, after feature compensation through the U-Fusion module, each decoder
layer no longer solely relies on the feature information from its same-scale layer, in contrast
to the traditional U-Net architecture. By fusing and compensating for multi-scale features,
the final decoder features have robust scale-awareness. They can effectively recognize
global semantic feature information while preserving fine-grained geometric details at a
more local scale. With the help of these decoder features, the accuracy and robustness of
our network during semantic segmentation tasks is significantly improved.

4. Experiments

In this section, we demonstrate the effectiveness of the proposed BEMF-Net through
various benchmark datasets. First, we introduce the evaluation metrics used in the experi-
ments, as well as the parameter settings and hardware configurations. Next, we provide
a brief description of each dataset to aid in understanding their properties. Finally, we
show the performance of BEMF-Net on different datasets, comparing it with state-of-the-
art networks. We also present ablation studies on different modules to demonstrate the
contribution of each individual module.

4.1. Experiment Settings

For each dataset, we used the coordinates and color information of points as inputs.
The datasets mainly consist of two types of large-scale scene point cloud datasets: outdoor
and indoor. Comprehensive experiments were conducted on both types of datasets; de-
tailed quantitative results and qualitative visualization prove the generalization capability
of BEMF-Net.
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Evaluation Metrics. For all experiment datasets, we employed the same evaluation
metrics: overall accuracy (OA), intersection over union (IoU), and mean intersection
over union (mIoU):

OA =
TP + TN

TP + FP + FN + TN
(22)

mIOU =
1

NC + 1

NC

∑
i=0

TP
FN + FP + TP

(23)

where TP is the true positive case, TN is the true negative case, FP is the false positive case,
and FN is the false negative case.

Loss function. Like most point cloud segmentation tasks, we chose weighted cross-
entropy as the loss function for all experiments, as follows:

Lwce(y, ŷ) = −
Nc

∑
i

ωip(yi) log(p(ŷi)) (24)

where ωi = 1/
√

ri, yi and ŷi are the ground truth and predicted class labels, respectively,
ri is the ratio of the number of point clouds about ith category to the overall point cloud.

Configuration setting. For the parameter settings, we followed the configuration of
RandLA-Net [27]. The number of neighbors for the K-nearest neighbor (KNN) search
was set to 16, and the size and stride of the convolution kernel were both [1, 1]. The
initial learning rate was 0.01, with a 5% decrease every epoch, for a total of 100 epochs.
All experiments were run on an Ubuntu system, using a single NVIDIA RTX 3090 GPU
for training and inference, and the architecture implemented in the experiments was the
TensorFlow framework.

4.2. Dataset Description

The SensatUrban [53] is a large-scale urban scene point cloud dataset constructed using
UAV-based photogrammetry. The dataset was collected across several cities in the UK,
covering approximately 7.6 square kilometers of scenes and containing over 3 billion points
with semantic annotations. The entire point cloud is manually classified into thirteen object
classes, including ground, vegetation, buildings, walls, bridges, parking lots, cars, bicycles,
etc., covering most of the semantic categories commonly encountered in real-world urban
areas. The multi-scale characteristics of the dataset serve to validate the robustness and
effectiveness of the network. The entire point cloud dataset was divided into 34 tiles for
training and testing purposes, and we followed the official partitioning method to ensure
fair comparisons.

The Toronto3D [54] was, as its name suggests, collected on a street in Toronto, Canada.
It comprises approximately 78.3 million points annotated in eight semantic categories:
roads, road markings, nature, buildings, utility lines, poles, cars, and fences. This dataset
was acquired using a vehicle-mounted LiDAR system and is considered a standard city
street scene dataset. The dataset was divided into four blocks: L001, L002, L003, and L004.
Following the official partitioning method, we used L002 as the test set, while the rest were
used as the training set. The ratio of the number of points of the test set to that of the
training set is approximately 1:7.

The Stanford Large-Scale 3D Indoor Spaces (S3DIS) [38] is one of the prominent indoor
datasets, captured using Matterport scanners. The dataset is divided into 6 areas, covering
a total area of 6000 square meters, including 272 rooms. It consists mainly of thirteen
common indoor object categories: ceilings, floors, walls, beams, columns, windows, doors,
tables, chairs, sofas, bookshelves, and clutter. In this study, we chose Area 5 as the test set,
while Areas 1–4 and 6 served as the training set to assess the generalization ability of our
network in indoor scenes.
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4.3. Experiment Result and Analysis

In this section, we elaborate on the experimental results of BEMF-Net on three datasets:
SensatUrban, Toronto3D, and S3DIS. The segmentation accuracy for each single class in
the datasets is fully compared and illustrated. Overall, the extensive experiments were
sufficient to demonstrate the effectiveness and robustness of our proposed method for the
task of semantic segmentation of a large-scale point cloud.

4.3.1. Evaluation on SensatUrban

Table 1 quantitatively demonstrates the leading position of our method on SensatUr-
ban and establishes a new state-of-the-art (SoTA). To elucidate the impact of the different
input information on the network and to demonstrate fairness in subsequent comparisons,
we present our numerical results for two different types of input. The first type only uses
the spatial coordinates of the points as input (w/o color), while the second type uses both
the coordinates and colors of the points as input information (w/ color). Our method
(w/ color) outperforms the baseline RandLA-Net [27] with an improvement of 2.9% and
9.1% in terms of OA and mIOU, respectively. Particularly noteworthy is its outstanding
performance in categories such as railways and footpaths, highlighting the significant
improvement of our method in detecting small-scale objects compared to most existing
approaches. In addition, our method (w/o color) still achieves great performances on
SensatUrban. With a 4.2% advantage over the previous state-of-the-art method NeiEA-Net
in terms of mIoU, our approach achieved higher accuracy on individual categories such as
bridges, parking lots, and bicycles. Analyzed from the perspective of feature information,
these categories of objects tend to rely more on positional information for classification,
with color information potentially leading to misleading results. However, regardless of
whether color information is used as input, the excellent comparative results demonstrate
the superiority of our network. Overall, for urban scenes like SensatUrban, incorporating
color information remains a favorable choice.

The visualizations in Figure 4 further illustrate the excellent improvements of BEMF-
Net in segmenting large-scale objects such as buildings and parking lots compared to the
baseline RandLA-Net. Moreover, our method exhibits a strong recognition capability for
small-scale objects such as cargo on rivers and railways. This clearly demonstrates the
ability of our method to perceive multi-scale objects in large scenes and the robustness of
its segmentation task.

Table 1. Quantitative comparison results on SensatUrban (%). The best results are presented in bold,
and the second-best results are underlined.

Method OA mIoU Grd. Veg. Build. Wall Bridge Park. Rail Traffic. Street. Car Foot. Bike Water

PointNet [25] 80.8 23.7 67.9 89.5 80.1 0.0 0.0 3.9 0.0 31.6 0.0 35.1 0.0 0.0 0.0
PointNet++ [26] 84.3 32.9 72.5 94.2 84.8 2.7 2.1 25.8 0.0 31.5 11.4 38.8 7.1 0.0 56.9
TagentConv [55] 76.9 33.3 71.5 91.4 75.9 35.2 0.0 45.3 0.0 26.7 19.2 67.6 0.0 0.0 0.0
SPGraph [47] 85.3 37.3 69.9 94.6 88.9 32.8 12.6 15.8 15.5 30.6 22.9 56.4 0.5 0.0 44.2
SparseConv [56] 88.7 42.7 74.1 97.9 94.2 63.3 7.5 24.2 0.0 30.1 34.0 74.4 0.0 0.0 54.8
KPConv [33] 93.2 57.6 87.1 98.9 95.3 74.4 28.7 41.4 0.0 55.9 54.4 85.7 40.4 0.0 86.3
RandLA-Net [27] 89.8 52.7 80.0 98.1 91.6 48.9 40.6 51.6 0.0 56.7 33.2 80.0 32.6 0.0 71.3
BAF-LAC [28] 91.5 54.1 84.4 98.4 94.1 57.2 27.6 42.5 15.0 51.6 39.5 78.1 40.1 0.0 75.2
BAAF-Net [32] 91.8 56.1 83.3 98.2 94.0 54.2 51.0 57.0 0.0 60.4 14.0 81.3 41.6 0.0 58.0
IR-Net [57] 91.3 56.3 84.2 98.1 94.6 61.6 60.8 44.2 15.7 49.4 37.2 79.1 37.8 0.1 68.7
NeiEA-Net [58] 91.7 57.0 83.3 98.1 93.4 50.1 61.3 57.8 0.0 60.0 41.6 82.4 42.1 0.0 71.0

Ours (w/o color) 92.7 61.2 85.4 98.4 95.1 60.2 66.1 60.7 16.4 59.2 43.4 81.5 42.6 17.9 68.2
Ours (w/ color) 92.7 61.8 85.2 98.5 95.0 63.8 64.0 57.4 26.4 60.0 47.2 84.2 42.8 0.0 79.5

4.3.2. Evaluation on Toronto3D

To validate the effectiveness of BEMF-Net in city street scenes, we conducted experi-
ments on Toronto3D. Similarly, we provide the experimental results for two models (w/o
and w/ color) to ensure the fairness and persuasiveness of the experiments. As shown
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in Table 2, our method retains a competitive advantage over most existing approaches,
achieving an improvement of 2.6% in OA over the baseline. For individual categories, we
achieve the highest segmentation accuracy in the nature and car categories, demonstrating
the success of our method in this respect. When analyzing our two models, we find that
the use of color leads to improved accuracy compared to solely relying on coordinates.
For instance, notable improvements are observed in the segmentation of poles and cars.
This suggests that Toronto3D is effective in the overall and individual segmentation results
upon the inclusion of color information. In contrast to the SensatUrban dataset, where the
addition of color information led to a significant decline in accuracy for certain individual
classes, this suggests that the effectiveness of incorporating color information varies across
different datasets. This, in turn, prompts our consideration for future work on how to
better leverage color information.

Input RandLA-Net Ours (w/ color)

Ground Veg. Building Wall Bridge Parking Rail Traffic. Street. Car Footpath Bike Water

Ground TruthOurs (w/o color)

Figure 4. Visual comparison of RandLA-Net and our method on SensatUrban.

Qualitative visualizations in Figure 5 highlight the excellent performance of our
approach. In particular, there is a noticeable improvement in the delineation of road
contours, even in scenarios with multiple overlapping objects in close proximity, indicating
the effectiveness of BEMF-Net in scenarios where traditional single-space feature encoding
may introduce ambiguities.
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Input

Ground Truth

RandLA-Net

Road Road mrk. Natural Building Util. line Pole Car Fence

Ours 

(w/o color)

Ours 

(w/ color)

Figure 5. Visual comparison of RandLA-Net and our method on Toronto3D.

4.3.3. Evaluation on S3DIS

Initially, our network modules were designed for outdoor scenes, but we believe
that BEMF-Net also possesses some degree of generalization for indoor environments.
Therefore, we conducted validation experiments on the mainstream indoor segmentation
dataset, S3DIS. As mentioned earlier in the methodology, indoor scenes often contain
objects that are spatially very close, making it difficult to distinguish them using only
spatial coordinates. Therefore, we used color information as a complement and constructed
a bilateral feature space.

Table 3 demonstrates our comparative results, creating a new SoTA compared to
current point-based algorithms. From the comparisons, it is evident that both of our
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proposed models have shown improvements in the overall evaluation metrics such as OA
and mIoU, thus confirming our initial hypotheses. When comparing the segmentation
accuracy of individual objects, a notable improvement is observed in most categories,
indicating the effectiveness of color in the context of S3DIS and similar indoor scenes.
The additional provision of color information in densely distributed objects can efficiently
enhance the discriminative capabilities of the segmentation network. We also achieved
excellent results in the wall, chair, bookshelf, board, and clutter categories.

Table 2. Quantitative comparison results on Toronto3D (%). The best results are presented in bold,
and the second-best results are underlined.

Method OA mIoU Road Rmrk. Nature Buil. Util.line Pole Car Fence

PointNet++[26] 92.6 59.5 92.9 0.0 86.1 82.2 60.9 62.8 76.4 14.4
DGCNN [48] 94.2 61.7 93.9 0.0 91.3 80.4 62.4 62.3 88.3 15.8
MS-PCNN [59] 90.0 65.9 93.8 3.8 93.5 82.6 67.8 71.9 91.1 22.5
KPConv [33] 95.4 69.1 94.6 0.1 96.1 91.5 87.7 81.6 85.7 15.7
TGNet [43] 94.1 61.3 93.5 0.0 90.8 81.6 65.3 62.9 88.7 7.9
MS-TGNet [54] 95.7 70.5 94.4 17.2 95.7 88.8 76.0 73.9 94.2 23.6
RandLA-Net [27] 94.4 81.8 96.7 64.2 96.9 94.2 88.0 77.8 93.4 42.9
ResDLPS-Net [35] 96.5 80.3 95.8 59.8 96.1 90.9 86.8 79.9 89.4 43.3
BAAF-Net [32] 94.2 81.2 96.8 67.3 96.8 92.2 86.8 82.3 93.1 34.0
BAF-LAC [28] 95.2 82.0 96.6 64.7 96.4 91.6 86.1 83.9 93.2 43.5
RG-GCN [60] 96.5 74.5 98.2 79.4 91.8 86.1 72.4 69.9 82.1 16.0
MFA [34] 97.0 79.9 96.8 70.0 96.1 92.3 86.3 80.4 91.5 29.4
NeiEA-Net [58] 97.0 80.9 97.1 66.9 97.3 93.0 97.3 83.4 93.4 43.1

Ours (w/o color) 97.0 81.3 96.3 61.2 97.1 93.8 87.8 84.5 93.1 37.5
Ours (w/ color) 97.0 81.4 96.2 60.0 97.6 94.1 87.9 85.7 94.1 35.9

As shown in Figure 6, where we showcase the segmentation results for several rooms,
it can be seen that BEMF-Net performs exceptionally well when there are walls and other
objects present on the same surface, such as blackboards on walls or doors near bookshelves.
This confirms that, even in indoor environments where object scales do not vary signifi-
cantly, there are still objects with similar colors and geometries that are challenging in terms
of recognition. Thanks to our proposed bilateral encoding approach, our method does not
rely solely on a single feature space for semantic representation. The integration of semantic
information from multiple feature spaces effectively aids indoor semantic segmentation
tasks, improving the segmentation recognition accuracy and robustness across all scenes.

Input RandLA-Net Ours Ground Truth

Ceil. Floor Wall Beam Col. Wind. DoorDoor Table Chair Sofa Book. Board Clut.

Input RandLA-Net Ours(w/o color)

Ceil. Floor Wall Beam Col. Wind. DoorDoor Table Chair Sofa Book. Board Clut.

Ground TruthOurs (w/ color)

Figure 6. Visual comparison of RandLA-Net and our method on S3DIS.
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Table 3. Quantitative comparison results on S3DIS (Area5) (%). The best results are presented in bold,
and the second-best results are underlined.

Method OA mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [25] - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [39] - 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
TangentConv [55] - 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8
PointCNN [42] 85.9 57.3 92.3 98.2 79.4 0.0 17.6 28.8 62.1 70.4 80.6 39.7 66.7 62.1 56.7
SPGraph [47] 86.4 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.5
HPEIN [61] 87.2 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.8 67.8 65.6 49.4
TG-Net [43] 88.5 57.8 93.3 97.6 78.0 0.0 9.3 57.0 39.4 83.4 76.4 60.6 41.8 58.7 55.3
RandLA-Net [27] 87.2 62.4 91.1 95.6 80.2 0.0 24.7 62.3 47.7 76.2 83.7 60.2 71.1 65.7 53.8
PCT [45] - 61.3 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
BAAF-Net [32] 88.9 65.4 92.9 97.9 82.3 0.0 23.1 65.5 64.9 78.5 87.5 61.4 70.7 68.7 57.2
BAF-LAC [28] - 65.7 91.9 97.4 82.0 0.0 19.9 61.5 52.9 80.3 87.8 78.9 72.7 75.0 53.8
DPFA-Net [62] 88.0 55.2 93.0 98.6 80.2 0.0 14.7 55.8 42.8 72.3 73.5 27.3 55.9 53.0 50.5
LGGCM [63] 88.8 63.3 94.8 98.3 81.5 0.0 35.9 63.3 43.5 80.2 88.4 68.8 55.8 64.6 47.8
NeiEA-Net [58] 88.5 66.1 92.9 97.4 83.3 0.0 34.9 61.8 53.3 78.8 86.7 77.1 69.5 67.9 54.2

Ours (w/o color) 89.3 66.5 93.7 98.1 82.6 0.0 21.7 61.8 55.3 82.2 89.9 69.3 74.2 77.0 58.9
Ours (w/ color) 89.5 66.9 93.7 98.1 83.3 0.0 21.3 62.5 57.4 80.5 90.5 67.7 74.2 80.4 60.1

4.4. Ablation Studies

To elucidate the individual contribution and effectiveness of each core module we
designed, we conducted ablation experiments separately for the bilateral local aggregation
(BLA), dilated bilateral block (DBB), and U-Fusion modules. Since SensatUrban requires
online submission, and Toronto3D has fewer test blocks, we selected S3DIS as the test
dataset for conducting the ablation experiments. The descriptions of different ablation
models are given below:

Our baseline model is designed based on RandLA-Net [27], so all ablation experiments
are conducted according to the structure of RandLA-Net for combination and comparison.

• a1: Replace RandLA-Net’s local spatial encoding and attentive pooling modules with
our BLA module. This is intended to validate the effectiveness of the proposed encoder
and the enhancement provided by the inclusion of multifaceted reinforced features
including coordinates, colors, and semantics for the segmentation task.

• a2: Replace RandLA-Net’s dilated residual block with our proposed DBB. This aims
to demonstrate the effectiveness of the multi-receptive field space provided by dense
connections for feature representation.

• a3: Embed the interlayer multi-scale fusion module U-Fusion into RandLA-Net to
illustrate the advantages of multi-scale feature fusion over the single-scale feature
connections of the traditional U-Net.

• a4: Remove multi-scale features from the complete network structure to demonstrate
the importance of multi-scale information.

• a5: Remove DBB from the entire network structure to demonstrate the effectiveness of
dense connections.

• a6: Remove BLA from the full network to highlight the effectiveness of bilateral features.

All evaluation metrics are consistent with the experiments. We chose mIoU for the
overall performance assessment, and detailed results and visualization are shown in Table 4
and Figure 7. It is evident that our full model achieves the best performance. Analyzed
from the perspective of individual module contributions, the numerical results from a1
indicate that the most significant effect comes from our U-Fusion model, leading to an
improvement in mIoU of almost 2% compared to the baseline. Additionally, from model a4,
it is evident that the removal of the U-Fusion module significantly decreases the accuracy,
highlighting the critical importance of multi-scale feature information for the semantic
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segmentation of large-scale point clouds. This effectively demonstrates the indispensability
of our designed multi-scale feature fusion module, U-Fusion, to the network.

Table 4. Ablation study of BEMF-Net core modules.

Model BLA DBB U-Fusion mIoU (%)

Baseline 62.4
a1 X 62.7
a2 X 62.5
a3 X 64.3
a4 X X 62.8
a5 X X 65.4
a6 X X 64.4

BEMF-Net (ours) X X X 66.9

Variant (1)

Variant (3)

Variant (2)

Variant (3) Our full framework

1aNetRandLA 2a 3a

4a 5a 6a Ours

Figure 7. Visual comparison of different variants on S3DIS.

Moreover, the comparison of segmentation accuracy between a1, a2, and a3 with
the baseline also reflects the accuracy improvement achieved by our designed encoding
module and multi-scale fusion module for the segmentation task. Conversely, a4, a5, and
a6 elaborate on the roles between the modules, demonstrating the interdependence of our
designed modules, which effectively cooperate with each other to improve the effectiveness
of semantic segmentation.

In addition, our proposed U-Fusion module effectively addresses the problem of
multi-scale perception in large scenes, and can be easily transferred to other networks as a
plug-and-play module and applied to various visual tasks.

5. Discussion
5.1. Discussion on Hyperparameter

In this section, we primarily analyze the main influencing hyperparameters. Since
our neighborhood construction algorithm is implemented through KNN, the choice of
the number of neighbors in KNN has a significant impact on the type of neighborhood
relationships we construct. We conducted tests with different K values on the S3DIS dataset,
and the experimental results are shown in Figure 8.

We further investigated how the variation of K affects the segmentation results and
found that the accuracy of segmentation rapidly increases with the increment in K. This is
because the expansion of the neighborhood provides a broader range of semantic informa-
tion and geometric correlations, thus ensuring greater semantic consistency within the local
region. However, when K reaches a certain threshold, the performance starts to decline.
This is typically due to the possibility of excessive local spatial information causing some
information blurring, as previously mentioned, when multiple objects exist within a small
space. Additionally, as K increases, the time required for neighborhood construction and
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feature extraction increases significantly, which is highly undesirable for processing data in
large-scale scenes. In other words, it leads to a substantial increase in time and memory
consumption, with only minimal improvements in segmentation results.

0 1 5 8 10 12 15 16 20 24 25
Values of K

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

m
Io

U
 (%

)

BEMF-Net

Figure 8. mIoU vs. K on validation split of S3DIS.

5.2. Discussion on Loss Function

In this section, we present experiments and discussions on the common weighted
cross-entropy (WCE) loss in semantic segmentation. Specifically, we experimented with
two different weighting computation methods for WCE; the first one is wde f ault = 1/ri,
which is also the default weighting method of WCE, while the second is wsqrt = 1/

√
ri,

denoted by sqrt. ri is the ratio of the number of point clouds about the ith category to the
total point cloud.

The experimental results for the S3DIS dataset are shown in Table 5. It can be seen that
the choice of weighting computation method for either type of loss does not significantly
affect the overall performance, but the combination of the two losses (wmixed = 1√

ri
+ 1

ri
)

does lead to a slight improvement in accuracy compared to using either method alone.
Since most segmentation algorithms currently only employ a single type of loss function
for training and evaluation, for the sake of fairness, we used only WCE(sqrt), which is
also used in RandLA-Net [27], as our loss function in the experiments for comparison with
other algorithms. Furthermore, the improvement in accuracy resulting from the combined
loss provides us with some potential directions for future research. For example, it is worth
further investigating how to design a reasonable and effective loss function tailored to the
network architecture and how to apply the loss function across multiple layers.

Table 5. Ablation study about the loss function in our methods.

Loss Function OA mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

WCE(de f ault) 89.4 66.8 93.7 98.0 83.3 0.0 21.3 62.4 57.1 80.5 90.3 66.5 74.0 80.5 60.1
WCE(sqrt) 89.5 66.9 93.7 98.1 83.3 0.0 21.3 62.5 57.4 80.5 90.5 67.7 74.2 80.4 60.1
WCE(mixed) 89.7 67.1 93.7 98.1 83.2 0.0 21.6 62.5 57.3 80.3 90.6 68.7 74.3 80.5 60.3

5.3. Discussion on Computational Efficiency

As shown in Table 6, we reported the inference speed and the number of parameters
of the model on the S3DIS dataset. It can be observed that our method has slightly fewer
parameters compared to BAF-LAC, and its speed is similar to LEARD-Net. However, in
terms of segmentation performance, it shows a slight improvement compared to both of
these algorithms, and it achieves a 4.5% increase in mIoU compared to RandLA-Net.



Remote Sens. 2023, 15, 5342 18 of 22

Table 6. The number of parameters and computational efficiency on S3DIS.

Method Parameter (Million) Inference Time (s) mIoU (%)

RandLA-Net [27] 4.99 90 62.4
BAAF-Net [32] 4.97 115 65.4
BAF-LAC [28] 6.39 132 65.7

LEARD-Net [46] 5.26 124 65.6

BEMF-Net (Ours) 6.07 127 66.9

5.4. Learning Process of Our Methods

To provide a more intuitive depiction of the actual performance of our BEMF-Net
during the learning process, we visually present the curves of loss and mIoU in Figure 9.
We describe the training process of RandLA-Net and our method on the S3DIS dataset.
The figure shows that our method converges faster compared to RandLA-Net, with the
loss tending to stabilize around the 40th epoch. In addition, the mIoU reaches its peak
around the 60th epoch and remains relatively stable in the subsequent training, without
significant fluctuations.
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Figure 9. Validation mIoU and training loss curves of RandLA-Net and our method on S3DIS.

6. Conclusions

Semantic segmentation techniques allow a better understanding of the scene environ-
ment, thereby extracting valuable information from 3D data that can be used to simulate
the real world. In this paper, we proposed a novel model, called BEMF-Net, designed
for the semantic segmentation of large-scale point clouds. This method encompasses
two significant contributions. Firstly, we presented the DBB module, which integrates
texture information to supplement the description of neighbor spaces and improve the
perception of local details. Our encoding process systematically exploits differences in
the neighboring spaces to achieve the accurate segmentation of semantic class bound-
aries. Additionally, we introduced the U-Fusion module, which is based on the traditional
skip connection. This component circumvents issues caused by feature smoothing from
sampling mechanisms, enabling the integration of multi-scale data and maintaining the
integrity of information across different layers. Notably, we achieved excellent results for
several benchmark datasets such as S3DIS and SensatUrban, and our performance on the
Toronto3D benchmark was on par with state-of-the-art methods. Finally, we conducted
ablation experiments to demonstrate the effectiveness of each proposed module.

The following conclusions were drawn from the above work:

• Enhancing the network’s ability to describe the point cloud is possible by adding extra
data, such as color information. The simultaneous use of geometry and color data can
help distinguish semantic class boundaries.



Remote Sens. 2023, 15, 5342 19 of 22

• Effective utilization of features at different resolutions is essential to improve scene
understanding. Ablation tests show that the proposed U-Fusion method is sensitive
to feature changes and provides positive feedback.

• This methodology can effectively function in three separate urban environments:
SensatUrban, Toronto3D, and S3DIS. SensatUrban pertains to capturing large-scale
outdoor urban scenes through the means of UAVs, while Toronto3D entails localized
urban scenes captured by radar mounted on vehicles. S3DIS encompasses indoor
scene data. This showcases the ability to address data variability to a certain extent.

• Real-world point cloud data are commonly obtained by radar or UAVs, which often
leads to inherent problems such as noise and incomplete data. In the future, we will fo-
cus on overcoming these challenges and achieving accurate point cloud segmentation,
especially in regions characterized by low data quality.
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